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1. Introduction

lR'"'̂ E^P|eviou,s paper (Kishen, 1942), a general method was developed
for "expressing any single degree of freedom Jfoi' treatments in the
case of the ..general symmetrical factorial design 5"', j being a prime
positive integer or a power of a prirne and m any positive integer,
in terms of its sets for main effects and interactions, and was utilized
for obtaining expressions for the unitary components of the third order
iniet-action in a 3^ design and of the second order interaction in
a 4^ design. When, however, the single degree of freedom belongs to
a (k — I),-th order interaction (k varying from 1 t6 in), a. simplified
and short-cut method of deriving these expressions has been described
in the present paper and has been employed for deriving, expressions
for the unitary components of the highest order interactions in the

• 3^, 3®, 4* and 5'' designs. Throughout this paper, when dealing with
the finite elements of the m-dimensional finite projective geometry
PG{m, j), we shall as usual write their co-ordinates, equations, etc., as
if they belonged to the m-dimensional finite Euclidean geometry
EG {m, s) immersed in the projective geometry (Bose and Kishen, 1940).

2. Method of obtaining Expressions for any Single Degree

.OF Freedom, belonging to the (/c — 1)-th Order
•. INTERACTIOM IN AN s'" DESIGN

Tn an s'" design, let any treatment combination (or the quantitative
measure of the result of application of the treatment combination)
be represented by.the symbol a/'^2" • • • aj"', where a,'' denotes the
/^-th level of the /'-th factor (/, varying from 0 to .y — 1, and /•,varying
from 1 to m). Then any single degree of freedom belonging to treat
ments may be written as - ' ' . ,

h, i,.; (rV, U. /„, varying from
0 to .9 - • 1),

where l,^ is a constant coefficient such that = 0.
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land records and agricultural departments, the-total'number of villages
selected for sampling are divided, into two random- groups, one group
being assigned to the staff of one department and the other to the
staff of the other department. As in. both cases the staff works within
the area under their normal jurisdiction, no special travelling is involved
and the cost of the survey is not affected. Without, therefore, affecting
the efficiency of the survey, this sort of replication can provide informa
tion on the relative efficiency with which the two agencies ^carry out
the field work. . , ' , ' .

Summary

The method of interpenetrating samples is a design for the sample
surveys in which the sample units are arranged,in setsiof two or more
interpenetrating samples and the informationi-for each set;is collected
in an independent manner. Mahala'noMs has used this .design in the
area surveys he carried out in Bengal and Bihar as a-.means of control
ling the reliability of field work. .-"The statistical efficiency of the design
in relation to the precision of the estimate and the cost involved,%as
been examined in the present note. , It has been shown that the'.method
leads to an appreciable lo^s of information per unit of cost.. This loss

,-fo'r the jute area survey in Bengal is computed at 21 per, cent. .Mn
more extreme cases.'nearly half of the information may be lost^ in
the case where the sample units are Independently located- at random
and are then grouped into two sub-samples, the loss of. information
per unit of cost would still be 8 to 17 per cent,
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It has been demonstrated in the previous paper that the expression
of L in terms of sets for main effects and interactions for the unrepli-
cated case is given by

r-

interactions containing a^- ... a

s'"— 1
Sum of the ^ sets for main effects and

5 . 1

0)

The practical procedure of obtaining the expressions for any single
degree of freedom has been outlined in, the previous paper. When,
however, the single degree of freedom belongs to a (/c — l)-th order
interaction (ui, u^, ..., being some k of the integers
1, 2, ..., m), the expression for it will involve only the sets for the
interaction and is easily derived by the simplified
procedure described in the subsequent paragraphs.

It is well known that the expression for a single degree of freedom
belonging to the highest order interaction A,,^ A,,^ ... A,,^^ in the
factorial design / formed by all combinations of the Wj-th, Mj-th,
..., and !/,.-th factors out of m factors of the factorial design j*",
(k < m), is of exactly the same form "as the expression for this single
degree of freedom when considered as belonging to the {k — l)-th
order interaction A„^ A„,^ . . . A^^ in an s"' design. When, therefore,
the expression for a single degree of freedom belonging to a. {k — l)-th
order interaction A„^ A,,^ ... A,,^ of an s'" design is required, it
would do to work out the expression for the single degree of freedom
in the s" design formed by all combinations of the Wi-th, Wj-th,. .
and H,.-th, factors, considering this single degree of freedom as belong
ing to the highest order interaction of this design.

In the two-way tatle for treatment combinations and sets for main
effects and interactions for the / design, only the sets corresponding
to the (s —1)'"^ parallel pencils of {k —1)-flats in PG {k, s) given by"

+• ••+ a.^x„j=-at ("i> "2! ••"fc fixed; u, 4
= l,2,....,.y-l; r = 0, 1, ...,^-1) (2)

where a^, a^, ..., are the ^ elements of GF (s), for the highest
order interaction of the design need be entered instead of sets for
all the main effects and interactions of this design. The treatment
combinations-are written down in the usual systematic rhanner in the
column on the extreme left, as shown in Table I in the case of the

4^ design, and on the top pf the subsequeijt (.s — columns of the
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table are entered systematically the left-hand sides of the equations of
the (,s — 1)'°""^ pencils in (2) {vide Table 1). Under each of these
columns, each row is .filled in by the number t (varying from 0 to
i —,l)j where t denotes the element a, of GF (i) given by

being the finite point in PG {k, s) corresponding
to the treatment combination on the extreme left of the horizontal row.

; The two-way table may now be dealt with in s '̂~~ portions, each
containing s"^ treatment combinations corresponding to all combinations
of the first two, viz.,-Wi-th and Wj-.th factors.' Consider the.sets corres
ponding to the first 1 pencils in (2), the.left-hand sides of the
equations of which are given by : ' "

- • ai.x-„3+ aiA-„^+ ... 4- a,A'„^+ . . . +

x„^+ ai^i„+ aiX„^+. . ._+ a^X,,'.+. . . -f a^x,,^^

' • •+ «3-S+- ••+ "ft
(4)

X,,^ -f + aiX„, + + •••+ aj X,,^ + .••+ /
The remaining {s — 1)'"-^ —(j —1) pencils are, divisible- into

(s — 1 groups, each of — 1 pencils, each of these groups
being similar to that in (4), the left-hapd sides of the equations of
the .y — 1 pencils in the general group being given by

, . •v«,+ •• •+

X,„+' a2X„,+'a;^.V„^H- 0;^',,,+ . . . + ai^AV^+. . . + a-i^X,,^

Vn.,+ ^u^'ui+ • • •+ • • •+

• X„^+ ai,X,„+ ai^X„^+. . ,,+ a,x„^ + . . .+ ^X,,^./

Then the difference between any two corresponding expressions in
(4) and (5) comes out to" be

(ajj-ai) (an-tti) + (ai,-aO 'V,<,+ •••+ (a,j.-ai) (6)

(5)
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which remains constant in each of the above portions of
treatment combinations, since x,,^, are the same for each
of the treatment combinations in each of the portions. Conse
quently, the constant coefficients corresponding to the given single
degree of freedom of the highest order interaction in the / design
need only be totalled up for the sets corresponding to the first group
of 5 - 1 pencils, the totals of the coefficients for the sets corresfjond-
ing to the remaining (.? —1)"-^— 1 groups of —1 pencils being
readily written down from the totals for the first group in view of the
constancy of difference in the corresponding expressions in (4~)- and
(5) established above., Thus, over the entire two-way table, the
totalling up of the coefficients has to be done for only the sets
corresponding to the first group of ^ —1 pencils, in consequence of
which- the computational labour is reduced- to about l/{s — of
what would be required in thegeneral procedure given in the previous
paper. An actual example will further elucidate the procedure.

(2.1) Illustration of the .\bove Procedure: Expression for
A'B'C'D'-in a 4^ Design

Let us consider a 4^ design, viz.,

(Aq, Cti, flg, fls) X (6q, hi, b^, A3) X (Cqj '-1; ''2! ^3) ^ (^fl! ^1> ^2j

and suppose it is required to obtain the expression for the single
degree of freedom given by

A'B'CD'= (03+ fla- fli- flo) (^3+ ^2- h-^0')
{cs+C2—Ci—c^) ids+d2—(li—do) : (7)

In this case there are 16 portions, each containing 16 treatment
combinations corresponding to all combinations of the first two factors,
of the two-way table of treatment combinations and 27 pencils of
3-flats in PG (4, 4) given by

('2' 'S) '1 — 1) -) 3, / = 0, 1, 2, 3) (8)

where ao = 0, aj = 1, ao x and a, = 1 + x are the 4 elements of
GF{2^). The sets of third, order interaction corresponding to these
pencils, written down in order in the usual systematic manner, may
be symbolized by Ru R2, •• •, R27 respectively.

In Table I is given the last portion ,of this two-way table comprised
pf 16 treatment combinations. The constant coefficients corresponding
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to the single degree of freedom (7) are shown against each treatment
combination in the last column in Table I. Evidently, there are here
9 groups of 3 pencils each, and we have to total up the coefficients
for only the first group of 3.pencils, the left-hand sides of which are
given by

Xi+ ^2+ •'̂ 3 + ^4. ^1+ 2^2+ X3+ Xi and Xi+ 3x2+ ^3+ -^4, (9)

0, 1, 2, 3 denoting the 4 elements ao, a^, and of GF (2^). These
pencils, as stated above, correspond to the sets R^, Ro and R3 respec
tively of the third order interaction in this case. We shall denote the
4 sub-sets of the first set corresponding to the four 3-flats of the first
pencil Xi-}- X2+ X3+ = 0, 1, 2, 3 by /?„, R^i, Rv.„ Ru respectively^
and similarly for the remaining 26 sets.

Now, accumulating the constant coefficients, corresponding to the
above single degree of freedom, for the first group of three sets
corresponding to the first group of three pencils (9), we obtain totals
shown below in Table II.

Table II

Totals of coefficients for the first group of three sets

Sub-set \

^1+3 -^4 Xi+2X2+X3+Xi j:i+3.V2+jr3 + *4

(^1) w w

First (0) 4 0 0

Second (1) 4 0 0

Third (2) -4 0 ' - 0

Fourth (3) -4 0 0

It would be seen from Table I that the totals of the coefficients for the

first sub-sets of the sets of the second group are respectively exactly
the same as the third sub-sets of sets of the first group, viz., — 4,
0, 0. Similarly, the totals of the coefficients for the first sub-sets of sets
belonging to the remaining groups may be directly written dowii,
as also those for the second, third and fourth sub-sets of sets belonging
to' the eight groups other than the first. The required totals are shown
in Table III.^

Adding up the totals of coefficients derived by this procedure for
the rernaining 1.5 portions of the two-way table, we finally obtain

A'B'CP'== Rn+Rri-Ru (10)
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Totals of coefficients for the 27 sets, considered in 9 groups of three
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' i - . • •

3. Maximum Number of Types of Unitary Components of

k (k — 1)-TH Order Interaction in an s'" Design .

Two or more, unitary components of a {k — l)-th order interaction'
in an i-'" design will be defined as belonging"to the same type if their
expressions in terms of sets for the {k l)-th order interaction are

•exactly similar. For example, in Table 3 of^ the "previous paper
showing expressions for the Compofients of the third order interaction
in a 3^ design, the four components AyBxC^D^ and

are of the same type, which may conveniently be represented
by. the . set of,suffixes 2111, the liurnber of components belonging to
this type being, evidently the nuniber of permutations of these suffixes.
Similarly, the six components A^B^CiDi, A-^BiCUDi, A^B^C^Dy,
A^BxC-fii, A\B^C^D^ and also belong to the same type 2211.

Since the suffixes correspond to the splitting up of a main effect
into 5 —1 unitary constituents, it follows that the maximum number
of types of components of a — l)-th order interaction in an i"*
design equals the number of A:-combinations of y 1 suffixes when
each suffix may be repeated any number of times. This number is
;known to be (Chfystal,'1931, pp. 10-12) . - ' ' ' . .

'H, = s+Jr -2 (s — 1) s (s 1).,. .(s + k-2)
(11)

Consider the general type of unitary component of a (k —l)-th order
interaction in which the first suffix occurs times, the second suffix
I2 times,; in general, the >'-th suffix I, times; and, finally, the (s ^ l)-th
suffix 1,^1 times, where /j, 4, ..., /,, .; ,/j_i can assume any positive
integral values subject to the restriction , ' ,

s-l

27 /, = /c (12)

Then, ffom what has been stated abbve, it follows that the number-
of unitary coiiiponents of the (/r — l)-th-order interaction belonging
to this type is

. ' "1^. .
lA 14 14-1 • "

(13)

Then the total number of unitary components of the (k —l)-th
order interaction is evidently . '.

\hh ••• 14-1 (14)
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where the summation is taken over all positive integral values of

k, k, • • •> 4-1 subject to the condition (12).

Now, by the multinomial theorem for a positive integral index,
v/e have

k 1
(c,+ c2+.... + c,_i> = 2:

4! U! ^
C't Co}'' (15)

where 4, 4, ../s_i can take any positive integral values subject to the
restriction (12). .

Setting Ci = Ca =... = = 1 in (15), we obtain

'l • '2 1 • '«-l

k\
(16)

It follows from (13) and (16) that all the {s — 1)*" degrees of freedom
belonging to the (/c —.l)-th order interaction in an .y'" design are thus
accounted for.

4. Expressions for Unitary Components of the Highest Order
Interactions in S'', 3", 4^ and 5® Designs

We shall now apply the procedure adumbrated in the foregoing
Section to obtain expressions for all the possible types of components
belonging to the highest order interactions in the case of the P, 3®,
4"* and 5^ designs in terms of sets for these interactions.

(4!1) Expressions for components of the highest order interaction in
3^ The 16 sets, each of 2 degrees of freedom, of'the fourth
order interaction iii a 3" design, viz., {Oq, a^, b^, ,
X(co, dx, ^2); denoted by N^, .. ., correspond respectively to the
16 parallel pencils of 4-flats in PG (5, 3) represented by the. equations

^1+ a<,.V3+ X4+ = a^

(4) '5 = 1) 2; / = 0, 1, 2) (17)

written in order in the usual systeniatic manner, U;, = 0, = 1,
02 = 2 being the three elements of GF-(3). The table showing these
sets, has, however, been omitted for want of space; •

The maximum number of types of unitary components in this
case is or 6. The expressions for these 6 types of components
of the fourth order interaction have been worked oiit and are presented
in Table IVi
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(4.2) Expressions for components the fifth order interaction in
3® design.—The 32 sets, each having tjwo degrees of freedom, of the
fifth order interaction in a 3®. design, viz., (fl„, fli, 02)X(/'o. '̂i> t'dx • • •
X(/o,/i,./2), symbolized by Pi, P., ..., P32, correspond respectively to
the 32 parallel pencils of 5-flats in PG{6, 3) represented by the
equations

Xi+ aj,^.Y2+ = a, .

1,2; f=-0, i, 2) (18)

written in order systematically. As before, the table showing these
sets is omitted for lack of spaice.

The maximum number ,of types of components in this case is
or 7..,,,The expressions for these 7 types of components of the fifth
order interaction have been found and are presented in Table-V.

(4.3) Expressions for c&'mponents of third order interaction in 4'*
design.—Th-Q 27 set's, each'c'dTrying three degrees of freedom, of the
third order interaction in a A' design, viz., (<7„, flj, a«, a-^X{b„, by, b^, h^)
X(c„, Ci, C3, C3)X(f/„,.'̂ i, 4, d-i), are symbolized by /?i, R., .as
already described in Section (2.1). These are not given for lack of
space;

The maximum number of types of unitary components of the third
order interaction is 15. The expressions for these 15 types have
been derived when the partitioning of the degrees of freedom for a main
effect is in accordance with method (ii) of the previous paper, and are
given in Table VI.

X4.4) Expressions for components of second'order interaction in 5®
design.—The 16 sets, each having four degrees of freedom, of the second
order interaction in a 5^ design, viz., (aq, Oi, flg, fi,i)x(6o, bi, b^, b^, b^
X(Co, Ci, C2, c-i, Ci) symbolized by M-,, M^, ..., correspond respec
tively to the 16 parallel pencils of planes in PG {2, 5) represented by
the equations

•'*^1+ = If ('2, /s = 1, 2, 3, 4; ; ^ 0, 1, 2, 3, 4) (19)

Ug = 0, a-i = 1, a, = 2, hs —3 and t= 4 being the five elements of
GF(5). These sets are, as before, omitted for want of space.

The partitioning of the 4 degrees of freedom for the first main
effect /] may now be done as under:
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_ A = 2a.j+ ffg—2ff„

.4, t= 2^4—flg—2(7.,—fli-l-2^0
1- (20)

Alt = a^~ 2a;+2a,-a„

'A^ ~ ^4— (7(1

iind similarly for the other two main effects.

Then the maximum number- of types of componflnts oF the
second order interaction is -or 20, for which the expressions have
been presented in Table VII.

5. Reduction in the Number of Possible Types of Compon[ents oi
A. (k — !)-th Order Interaction in an s'" DESicb,'

When the s — 1 unitary constituents of a main effect are all of
distinct types and are not similar in groups of types, the- number of
possible types of components of a (k — l)-th order interaction in an
s'" design equals the maximum number of these types, .viz., i
When, however, "the 5 — 1 unitary components of a main effect them
selves reduce to q types {q<s— 1), it has.been found that is

the lower bound for the number of distinct-types of components of the
{k — l)-th order interaction.

Consider the components of the second order interaction iti
a 5^ design discussed above in Section (4-4) and the expressions for
the 20 components given in Table VIJ. It will be seen that -the first
and third unitary components in (20) belong to the same type. Conse
quently, the lower bound for the number of distinct types in this Case

.is 10. It would appear from Table VII that the-number of distinct
types of components is also actually 10, under which the 20 types
of components given there can be classified. The distinct types and
the components belonging to each are shown in Table Vill.

Let us now take a 4^ design and consider first the splitting up of
a main effect according to method (ii) of the previous paper. In this
case, the first and third unitary components are of the same type, From
the expressions for the components of the second' order interaction
given" in Table 6 of the previous paper, it would appear that in this
case there are five distinct types of components symbolized by 111,
112, 122, 113 and 222, whilst the lower bound of the number of
possible types is or 4. When, however, the splitting up of the
3 degrees of freedom for a main effect is according to method (i) of
the previous paper, all the three unitary constituents are of one and
the same type. It would appear from Table V of the previous paper
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Table VIII

Distinct Types of Components of Second Order
Interaction in 5^ Design

SI.
No.

\ •

Distinct types Components belonging to the same distinct types

-*-
1 1 1 1 Cx, A3 B, Cu A3 B3 Cj, A3 'B3 C3

2 1 1 2 Ai A3 Bi Ci, A3 B3 C2

3 1 2 2 Ai Bi Cu A3 Bi Q • •
»

4 2 2 2 Ai Bi Ci

5 1 1 4 A, -Bi Q, A, B3 Ci, Ai B3 Q

-

6 1 4 4 Ai £4 Ci, Ai Bi C3

7 4 4 4 Ai 54 C4

,8 2 2 4 Ai B, Ca

' 9 2 4 4 Ai B, Q

-

10 1 2 4 A, Bi Ci, Ai B3 C2

that all the unitary components of the second order interaction belong
to one type, the lower bound of the number of possible types of
components in this case being also 1. This result is also true for the
components of a (^ — l)-th order interaction in a 4"' design when
the. splitting up is by method (i). In the' case of a 4'̂ design, the
expression for the component A'B'C'D' of this type has already been
worked out above in (7).

Let us finally consider a 4^ design, expressions for the compo
nents of the third order interaction for' which are given in Table VI.
The lower bound for the number of distinct types of components in
this case is 5, whil'st the actual number of distinct types is found to be
7 under which all the 15 types of components shown in Table VI can
be categorized. The distinct types and the components belonging to
each are shown in Table IX.

From the above examples, it is surmised that when, in an j*" design,
the sub-division of the j — 1 degrees of freedom for a main effect
results in only q distinct types of unitaryconstituents, where q <s
the number of distinct types of components of a {k —l)-th. order
interaction is when j is a prime number. When, however, s is
a power of a prime, is the lower bound for the number of these

8
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Table IX

Distinct Types of Components of Third Order
Interaction in 4^ Design

SI. No. Types . Components belonging to the same distinct types

1 1111 Ai Bx Ci Di, Ai Ci D3, Ai B3 .

• 2 1112 Ai Bi Cx D^, Ai Bi C3 D^, Ai B^ C3 D^, A3 B3 C3

3 • 112 2 Ai Bi C2 Ai B3 C2 A3 B3 C2

4 12 2 2 Ax B^ C2 A. ^3 B2 C2V2

5 2 2 2 2 A2 B2 Cg D2

6 113 3 Ai Bi C3 D3

' 7 3 3 3 3 A3 B3 C3 D3

distinct types, this number being actually equalled in some cases when
j is a power of 2.

6. Concluding Remarks

• Given the expression for a type of unitary component of a
{k —l)-th order interaction in an j"*. design,, it has not been possible
to evolve a method, if any, by which the expressions for the other
components belonging tO' that type can be derived therefrom. If,
therefore, expressions for any components of the highest order inter
actions in 35, 3®, 4^ and 53 designs other than those given in-Tables
IV, V,- VI and VII are required, these will have to- be obtained by the
procedure described in Section 2.

7. Summary

The general method for expressing any single degree of freedom
for treatments in the general symmetrical factoriar design j*", where
j is a prime positive integer or a power of a prime and m any positive
integer, in terms of its sets for main effects and interactions developed
in the previous paper has been considerably simplified herewhen the
single degree of freedom belongs to a. {k —l)-th order interaction
(fc varying from 1 to m). This simphfied method has beea utilized for
obtaining expressions for single degrees of freedom belonging to the
highest order interactions in 3®, 3®, 4^ and 5® designs.

Types of components of a (fc —l)-th order interaction in an
s*" design (k varying from 1 to m) have been defined and it has been
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shown that the maximum number of types of these components is
this upper bound being attained when the j —1 unitary compo

nents of each main effect are all of different types. When, however,
these reduce to only q distinct types, the lower bound for the number
of distinct types of components is It is surmised that this lower
boundis always equalled when s is a prime number and also, sometimes
when 5 is a power of 2.

It is not known whether a method exists by which expressions
for the components of a {k —l)-th order, interaction belonging to
one type can be derived from the given expression for one such
component.

Finally, it is a pleasure to thank Messrs. R. M. Chatterjee and
R. C. Pandya for ' valuable assistance in the extensive numerical
calculations.
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